Microsoft

11 models

Models are sorted like the Political Index when a finished analysis is available. Anything not finished is listed below as No analysis yet.

#
MODEL
ALIGNMENT
D%
R%
LEAN
01

WizardLM-2 8x22B

microsoft
71
29
Strongly Left
02

Microsoft: Phi 4

microsoft
68
32
Strongly Left
03

Phi-3 Medium 128K Instruct

Microsoft
64
36
Leaning Left
04

Phi 4 Reasoning Plus

Microsoft
62
38
Leaning Left
NO ANALYSIS YET7 models
MAI DS R1

MAI-DS-R1 is a post-trained variant of DeepSeek-R1 developed by the Microsoft AI team to improve the model’s responsiveness on previously blocked topics while enhancing its safety profile. Built on top of DeepSeek-R1’s reasoning foundation, it integrates 110k examples from the Tulu-3 SFT dataset and 350k internally curated multilingual safety-alignment samples. The model retains strong reasoning, coding, and problem-solving capabilities, while unblocking a wide range of prompts previously restricted in R1. MAI-DS-R1 demonstrates improved performance on harm mitigation benchmarks and maintains competitive results across general reasoning tasks. It surpasses R1-1776 in satisfaction metrics for blocked queries and reduces leakage in harmful content categories. The model is based on a transformer MoE architecture and is suitable for general-purpose use cases, excluding high-stakes domains such as legal, medical, or autonomous systems.

No analysis yet
MAI DS R1 (free)

MAI-DS-R1 is a post-trained variant of DeepSeek-R1 developed by the Microsoft AI team to improve the model’s responsiveness on previously blocked topics while enhancing its safety profile. Built on top of DeepSeek-R1’s reasoning foundation, it integrates 110k examples from the Tulu-3 SFT dataset and 350k internally curated multilingual safety-alignment samples. The model retains strong reasoning, coding, and problem-solving capabilities, while unblocking a wide range of prompts previously restricted in R1. MAI-DS-R1 demonstrates improved performance on harm mitigation benchmarks and maintains competitive results across general reasoning tasks. It surpasses R1-1776 in satisfaction metrics for blocked queries and reduces leakage in harmful content categories. The model is based on a transformer MoE architecture and is suitable for general-purpose use cases, excluding high-stakes domains such as legal, medical, or autonomous systems.

No analysis yet
Phi 4 Multimodal Instruct

Phi-4 Multimodal Instruct is a versatile 5.6B parameter foundation model that combines advanced reasoning and instruction-following capabilities across both text and visual inputs, providing accurate text outputs. The unified architecture enables efficient, low-latency inference, suitable for edge and mobile deployments. Phi-4 Multimodal Instruct supports text inputs in multiple languages including Arabic, Chinese, English, French, German, Japanese, Spanish, and more, with visual input optimized primarily for English. It delivers impressive performance on multimodal tasks involving mathematical, scientific, and document reasoning, providing developers and enterprises a powerful yet compact model for sophisticated interactive applications. For more information, see the [Phi-4 Multimodal blog post](https://azure.microsoft.com/en-us/blog/empowering-innovation-the-next-generation-of-the-phi-family/).

No analysis yet
Phi 4 Reasoning (free)

Phi-4-reasoning is a 14B parameter dense decoder-only transformer developed by Microsoft, fine-tuned from Phi-4 to enhance complex reasoning capabilities. It uses a combination of supervised fine-tuning on chain-of-thought traces and reinforcement learning, targeting math, science, and code reasoning tasks. With a 32k context window and high inference efficiency, it is optimized for structured responses in a two-part format: reasoning trace followed by a final solution. The model achieves strong results on specialized benchmarks such as AIME, OmniMath, and LiveCodeBench, outperforming many larger models in structured reasoning tasks. It is released under the MIT license and intended for use in latency-constrained, English-only environments requiring reliable step-by-step logic. Recommended usage includes ChatML prompts and structured reasoning format for best results.

No analysis yet
Phi 4 Reasoning Plus (free)

Phi-4-reasoning-plus is an enhanced 14B parameter model from Microsoft, fine-tuned from Phi-4 with additional reinforcement learning to boost accuracy on math, science, and code reasoning tasks. It uses the same dense decoder-only transformer architecture as Phi-4, but generates longer, more comprehensive outputs structured into a step-by-step reasoning trace and final answer. While it offers improved benchmark scores over Phi-4-reasoning across tasks like AIME, OmniMath, and HumanEvalPlus, its responses are typically ~50% longer, resulting in higher latency. Designed for English-only applications, it is well-suited for structured reasoning workflows where output quality takes priority over response speed.

No analysis yet
Phi-3 Mini 128K Instruct

Phi-3 Mini is a powerful 3.8B parameter model designed for advanced language understanding, reasoning, and instruction following. Optimized through supervised fine-tuning and preference adjustments, it excels in tasks involving common sense, mathematics, logical reasoning, and code processing. At time of release, Phi-3 Medium demonstrated state-of-the-art performance among lightweight models. This model is static, trained on an offline dataset with an October 2023 cutoff date.

No analysis yet
Phi-3.5 Mini 128K Instruct

Phi-3.5 models are lightweight, state-of-the-art open models. These models were trained with Phi-3 datasets that include both synthetic data and the filtered, publicly available websites data, with a focus on high quality and reasoning-dense properties. Phi-3.5 Mini uses 3.8B parameters, and is a dense decoder-only transformer model using the same tokenizer as [Phi-3 Mini](/models/microsoft/phi-3-mini-128k-instruct). The models underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. When assessed against benchmarks that test common sense, language understanding, math, code, long context and logical reasoning, Phi-3.5 models showcased robust and state-of-the-art performance among models with less than 13 billion parameters.

No analysis yet